Graph Colouring by Maximal Evidence Edge Adding

نویسندگان

  • Barry Rising
  • John Shawe-Taylor
  • Janez Zerovnik
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Edge-colouring Indiierence Graphs on Edge-colouring Indiierence Graphs

Vizing's theorem states that the chromatic index 0 (G) of a graph G is either the maximum degree (G) or (G) + 1. A graph G is called overfull if jE(G)j > (G)bjV (G)j=2c. A suu-cient condition for 0 (G) = (G)+1 is that G contains an overfull subgraph H with (H) = (G). Plantholt proved that this condition is necessary for graphs with a universal vertex. In this paper, we conjecture that, for indi...

متن کامل

Edge Colouring Reduced Indifference Graphs

The chromatic index problem { nding the minimum number of colours required for colouring the edges of a graph { is still unsolved for indiierence graphs, whose vertices can be linearly ordered so that the vertices contained in the same maximal clique are consecutive in this order. Two adjacent vertices are twins if they belong to the same maximal cliques. A graph is reduced if it contains no pa...

متن کامل

Colouring graphs with constraints on connectivity

A graph G has maximal local edge-connectivity k if the maximum number of edge-disjoint paths between every pair of distinct vertices x and y is at most k. We prove Brooks-type theorems for k-connected graphs with maximal local edge-connectivity k, and for any graph with maximal local edge-connectivity 3. We also consider several related graph classes defined by constraints on connectivity. In p...

متن کامل

On nearly regular co-critical graphs

A graph G is called (K3,K3)-co-critical if the edges of G can be coloured with two colours without getting a monochromatic triangle, but adding any new edge to the graph, this kind of ’good’ colouring is impossible. In this short note we construct (K3,K3)-co-critical graphs of maximal degree O(n3/4).

متن کامل

On Edge - Colouring

Vizing's theorem states that the chromatic index 0 (G) of a graph G is either the maximum degree (G) or (G) + 1. A graph G is called overfull if jE(G)j > (G)bjV (G)j=2c. A suu-cient condition for 0 (G) = (G) +1 is that G contains an overfull subgraph H with (H) = (G). Plantholt proved that this condition is necessary for graphs with a universal vertex. In this paper, we conjecture that, for ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000